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Oritatami:
A model for co-transcriptional folding

The program:

-+ a sequence of bead types

(the transcript)

The Instructions:

- the rule a¥b if bead types a

and b attract each other

The input configuration:
- Some beads placed
beforehand (the seed)

Seed
Beads \
already
folded 2
& placed\ p AN e

produced

Geary, Meunier, Schabanel, Seki MFCS 2016



RNA Folding

(Real time: ~1 second)

Part already
folded

Part been

Encoding of the
transcript

N

Video: Geary



Oritatami:
A model for co-transcriptional folding

The dynamics Beads See\::l
» Starting from the seed, the already
sequence is produced one bead folded
at a time & placed\ !

* Only the 6 last produced beads

are free to move and explore the
accessible positions to settle in O
the ones maximizing the O \
number of bonds
last O
« All other beads remain in their beads
last locations produced

here, delay 6 = 33 Geary, Meunier, Schabanel, Seki MFCS 2016
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Oritatami:
A model for co-transcriptional folding

The dynamics. Beads See\::l
» Starting from the seed, the already
sequence is produced one bead folded
at a time & placed\ '
- Only the 6 last produced beads @
are free to move and explore the
accessible positions to settle in O'O
the ones maximizing the /

number of bonds

« All other beads remain in their
last locations

4 Geary, Meunier, Schabanel, Seki MFCS 2016



Oritatami:
A model for co-transcriptional folding

: Seed
The dynamics. Beads \
» Starting from the seed, the already
sequence is produced one bead folded _
at a time & placed X f :V?,E
* Only the 6 last produced beads @ placed
are free to move and explore the /
accessible positions to settle in O'O
the ones maximizing the /

number of bonds

« All other beads remain in their
last locations
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Oritatami:
A model for co-transcriptional folding
Seed

The dynamics.

| new bead
» Starting frc?m the seed, the oroduced
sequence Is produced one bead

at a time \
N

* Only the 6 last produced beads
are free to move and explore the
accessible positions to settle in O'
the ones maximizing the
number of bonds

« All other beads remain in their
last locations

5 Geary, Meunier, Schabanel, Seki MFCS 2016
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The dynamics.

- Starting from the seed, the
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dJ New bead
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The dynamics.

- Starting from the seed, the
sequence Is produced one bead
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* Only the 6 last produced beads
are free to move and explore the
accessible positions to settle in
the ones maximizing the
number of bonds

« All other beads remain in
last locations
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Oritatami:
A model for co-transcriptional folding

The dynamics. The bead has same
position In all
maximal extension
= deterministic

- Starting from the seed, the
sequence Is produced one bead
at a time

* Only the 0 last produced beads \ o
are free to move and explore the ]
accessible positions to settle in %

the ones maximizing the )
number of bonds

« All other beads remain in
last locations

9 Geary, Meunier, Schabanel, Seki MFCS 2016
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Previous work

Some abstract Tile Assembly seminal work

* Tile assembly systems are Turing universal [Winfree, 1998]
* Arbitrary shape assembly with optimal tile set size [Soloveichik, Winfree, 2007]
* |Intrinsic universality [Doty et al, 2012]

e Uncomputable limit configuration [Lathrop et al, 2011]

ritatami
* A binary counter [Geary, Meunier, S., Seki, 2016]
 Heighdragon fractal [Masuda, Seki, Ubukata, 2018]
* Folding arbitrary shapes [Demaine et al, 2018]

 NP-hardness for oritatami design [Geary et al, 2016; Ota, Seki, 2017; Han,
im, 2017] and for non-determinisitic oritatami equivalence [Han et al, 2016]

e Efficient Turing Machine simulation through tag-systems [Geary et al, 2018]
* |ntrinsic 1D Cellular Automata simulation [Pchelina et al, 2020]
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Previous work

Some abstract Tile Assembly seminal work

* Tile assembly systems are Turing universal [Winfree, 1998]
* Arbitrary shape assembly with optimal tile set size [Soloveichik, Winfree, 2007]
* |Intrinsic universality [Doty et al, 2012]

% Uncomputable limit configuration [Lathrop et al, 2011]

Oritatami

* A binary counter [Geary, Meunier, S., Seki, 2016]

* Heighdragon fractal [Masuda, Seki, Ubukata, 2018]
* Folding arbitrary shapes [Demaine et al, 2018]

* NP-hardness for oritatami design [Geary et al, 2016; Ota, Seki, 2017; Han,
Kim, 2017] and for non-determinisitic oritatami equivalence [Han et al, 2016]

e Efficient Turing Machine simulation through tag-systems [Geary et al, 2018]
* [ntrinsic 1D Cellular Automata simulation [Pchelina et al, 2020]

% TODAY: Uncomputable limit configuration & Turmite intrinsinc simulation
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Uncomputable?
Limit configuration?

* The limit configuration c= is the configuration at the end
of time:

3o

COC°°-CCtCCt+1C°--CCOO:Uct

t=0

e c~is uncomputable is the function (¢, j) = ¢} is
uncomputable

12



Uncomputable limit
configuration in alAM

 Simulate in parallel all Turing
machines on an empty input

e Go down to place a (black) tile
at the bottom if the TM halts

= The bottom row is

uncomputable
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Uncomputable limit
configuration in alAM

u

Egﬁ e Simulate in parallel all Turing
Eg" machines on an empty input
P » Go down to place a (black) tile
gy at the bottom if the TM halts
Ff e F. = The bottom row is
o L , uncomputable
i
FFH rr
FFF '
FFF fr
FFF i
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Turmites

A finite automata follows a self-avoiding path, moving
and writing a state according to a uniform local rule

A clockwise walker
The rule:
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Turmites

A finite automata follows a self-avoiding path, moving
and writing a state according to a uniform local rule

A clockwise walker
The rule:
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Turmites implement CA

()

Left/Right Swiping
The rule:

‘



implement CA

Turmites
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Turmites doodle
uncomputably

/N A
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Turmites doodle
uncomputably

Diagonal simulation of
all Turing Machines
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Turmites doodle
uncomputably

AN,

Markers are regularly placed of increasing size = 7 + (¢ + 1)/2

OO0 90889
“:‘:‘:‘ Diagonal simulation of ‘:‘:‘:‘:o’
< all Turing Machines 1700
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Turmites doodle
uncomputably

3

A e

0
“““““‘“‘“““““““““““0‘&‘;‘
L M

‘:“ arkers are regularly placed of increasing size = i + (i <~1)/2
R YNRTANAY L
Diagonal simulation of 1+
® i “"
all Turing Machines '
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Turmites doodle
uncomputably

2]

0
SSSSSSSSCSSSSSUSSSESSSHSSSS S -

(I Markers are regularly placed of increasing size = 4 + (i +/1) /2

Diagonal simulation of ‘:““0
all Turing Machines 1’
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Turmites doodle

uncomputably
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Turmites doodle
uncomputably

0
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Turmites doodle
uncomputably
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Turmites doodle

uncomputably

Diagonal simulation of
all Turing Machines
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uncomputably

Diagonal simulation of
all Turing Machines
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Turmites doodle
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uncomputably
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Turmites doodle
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Turmites doodle
uncomputably

A
Ve

Diagonal simulation of
all Turing Machines
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Turmites doodle
uncomputably

A
L

Diagonal simulation of
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Turmites doodle
uncomputably

A
L

Diagonal simulation of
all Turing Machines
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Turmites doodle

uncomputably
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Turmites doodle

uncomputably

GG

+ (i 1) /2
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Turmites doodle

uncomputably

33



D
1a,
all T
Turi
riilsimu
? Mljttio
Ch.n of
in
es

T
‘ /

it
““
asas
““
““
““ 3
““ m
““ a
““ =
““
““
““ 1
““ :
““ - :
o a
i<

34



MmsS simulate

6

2
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Oritatami sytems simulate
1D CA instrinsically

Time Y

* Previous work. [PSSU, 2020]
1D Cellular automata intrinsic simulation

\.5. Absorb the offset 2(Qx + y)

/ FI t2. Scaffold \> \ 6. Special beads in the O
a

N %0 :
D lookup table flip

',: >« ) matching magnets to
D write z',y’ |
/ '31 ,4. Lookup table shifted O
7l by 2(Qz + y) |

77 Shift the lookup table by A.,=2(Qz - v)

36



Oritatami sytems simulate
1D CA instrinsically

Time
> 0,

* Previous work. [PSSU, 2020]
1D Cellular automata intrinsic simulation

N\ 5. Absorb the offset 2(Qz + y)

6. Special beads in the of
lookup table flip «

> % matching magnets to
write z’,y’

2 Problems. Supercells must be iSOt_mpic -\,
We need to exit from an arbitrary side... -

36



the Supercell
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the Supercell
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the Supercell
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the Supercell

38



the Supercaell

TS T

1/ Scaffold layer
2. Read layer ‘_
¢ 3. Write layer

38



the Supercaell

1/ Scaffold laye
/ 2.Read layer
3. Write layer

% 4. Exit layer /

38



the Supercell

39



Reading. Reading boxes

29x Q) 2xQ) 1xQ/
(

If j-th bit = 1, then Offset += 2Q’
= Offset on i-th side = state(i)xQ’

= Total Offset on all side = <states> < 0..Q%-1

40



the Supercaell

TS T

1/ Scaffold layer
2. Read layer ‘_
¢ 3. Write layer

41



Writing. Offset pulls the
transition table to the right

bit 0 and bit 1 fold differently Offset

— S\ l

% R@%& R@w\«xy =
A - \
Qs Qs

The boxes hide the Qf unused
entries In the transition table



Writing. Offset pulls the
transition table to the right

bit 0 and bit 1 fold differently
= the exit layer shows or hide the special beads

/ ’Z‘\ \ / ’; \ / ’Z“ \

Qe Qe

The boxes hide the Qf unused
entries In the transition table

51 @—\%\ge @-\%\gx =\
| \
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the Supercaell

TS T

1/ Scaffold layer
2. Read layer ‘_
¢ 3. Write layer

44



the Supercaell

== ——

1/ Scaffold laye
2. Read layer

3. Write layer

‘Resynchronize’

\; °O

44



Resynchronizing.
Speedbumps FooUZ2020)

W&,
Can absorb
any offset < Q6
(in Zig-Zags! @)
y/ —




the Supercaell

1/ Scaffold laye
/ 2.Read layer
3. Write layer

% 4. Exit layer /

46



=xIting... or not

exit box

By default, cxit layer follows the
border of the exit box

S

]
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=xIting... or not

< exit box

With the proper signal (offset!), exit
layer folds upon itself and... exit!
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=xIting... or not

74

-

< exit box

With the proper signal (offset!), exit
layer folds upon itself and... exit!
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Foldi

Key new tool
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RS an e O Can O T O G O O 6 O O O S O S O O

Suspiciously
simple fact

All layers stay
synchronized

O\
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Almost there

next(z, y) = y x [z/y] = least multiple of y which is at least x

_a t(2w+1 » 2
\ n \ next(2wt1+z (+nz), 2n) \ compl(z, y) = next(z, y) — x

\ n—5-+ 2w+ z(+ nz\ such that z + compl(z, y) = next(z, y)

\ n—16 \ 5 \ 5 \ 2w+ 1+ z (+ n2)
6 MNMH«MH!, m:mgv\ \ \

20 T Total dark blue hidden 2n—periods = 2r + 1 + w(2k + 1)
® h” \ o— o \ T =(@2k+1)+2r+1
Total light blue = 5+z+1+242w+6+2+5+4+7
® = 2(w + = + 15) = a multiple of 2n
o >

First compute w 2 1
Set z = n x [(w + 15)/n] — (w 4+ 15) = compl(w+15, n)

2w+ 6+ a(+n) Then adjust k and r and 2

N~

/\/\/\B

Total hidden length is 2n(w(2k+1)+2r+1+2)+2(w+x+15)
minimum value is for (w,k,7,2)=(1,1,0,0)
2n(3+1)+2(2+z+15) = 2n*5 for n217

so we need a special design for 2nm with m < 4

z and y only depend on w (not k nor r):
z = compl(w+15,n)

y = compl(w+10,n) @r+Dn+4
so if we fix w mod n, then z and y are fixed values

for instance if w = (n — 15) mod n, then = 0 and y = 5

Total length of blue inside the box =
n
+ n(2k+1)
+2(k-r)n+2w+2y+20
+(2r+1)n+2(w+z+15)
= n(4k+3) + 2(w+10+y) + 2(w+15+x)
= n(4k+3) + 2 next(w+10, n) + 2 next(w+15, n)

Total length of pink inside the box =
n
+ 2nw(2k+1)
+2n(27r+1)
+2(w+ax+15)
(+ 2n2)
= n(4(k+r)+5+2) + 2(wtz+15)
= n(4(k+r)+5+2) + 2 next(w+15, n)

2(k—rn+1

2w
2(k = r)n + 2w+ 2y + 20
must be a multiple of 2n

y = distance to next multiple of n of
(w + 10)
2w+6+y

2w+ T y
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Almost there
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