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What is a packing?

Discs:

Packing P:
(in R2)

Density:

1 r s

δ(P) = lim sup
n→∞

area([−n, n]2 ∩ P)

area([−n, n]2)

Which packings maximize the density?
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Why do we study packings?

to pack fruits

and vegetables

to make
compact
materials

Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods.
Journal of the American Chemical Society, 137(20):6662–6669, 2015.
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Context and

2D hexagonal -packing: δ = π

2
√

3

Lagrange, 1772

The hexagonal packing maximizes the density among -lattice packings.

Thue, 1910 (Toth, 1940)

The hexagonal packing maximizes the density.

3D hexagonal -packing: δ = π

3
√

2

Gauss, 1831

The hexagonal packing maximizes the density among lattice -packings.

Hales, Ferguson, 1998–2014 (Conjectured by Kepler, 1611)

The hexagonal packing maximizes the density.
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Context

Two discs of radii 1 and r :

Lower bound on the density: π

2
√

3
(hexagonal packing with only 1 disc used)

Upper bound on the density:

Florian, 1960

The density of a packing never exceeds the density in the following triangle:
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Context

A packing is called triangulated if each “hole” is bounded by three tangent discs.

Kennedy, 2006

There are 9 values of r allowing triangulated packings.

Heppes 2000,2003
Kennedy 2004
Bedaride, Fernique, 2019

All these 9 packings maximize
the density.

1
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Context

Conjecture (Connelly, 2018)

If a finite set of discs allows a saturated triangulated packing then the density is
maximized on a saturated triangulated packing.

True for and .

What happens with ?
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Context

3 discs:

1 r s

164 pairs (r , s) allowing
triangulated packings:

(Fernique, Hashemi, Sizova 2019)

15 cases: non saturated

24 cases: a 2-disk
packing is denser

Case 53 is proved
(Fernique 2019)

15 more cases proved

The others?
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Idea of the proof for

A Delaunay triangulation of a packing: no points inside a circumscribed circle

δ∗ = δM∗ = π

2
√

3 ∀ M, δM ≤ δM∗ = δ∗

δ =
∑
M∈T

δM ≤
∑

M∗∈T ∗
δM∗ ≤ δ∗
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Idea of the proof for

Delaunay triangulation → weighted by the disc radii

Triangles have different densities:

δ( ) 6= δ( )

What to do?

Redistribution of the densities:

Some triangles “share their density” with neighbors
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Proof for

T ∗ – saturated triangulated packing of density δ

T – any other saturated packing with the same discs

The sparsity of a triangle M∈ T : S(M) = δ × area(M)− cov(M)

S(M) > 0 iff the density of covering of M is less than δ
S(M) < 0 iff the density of covering of M is greater than δ

δ(T ∗) ≥ δ(T ) ⇔
∑
M∈T

S(M) ≥ 0

⇔ (M), (U)

To show that, introduce a potential U such that for any triangle M∈ T ,

S(M) ≥ U(M) (M)

and ∑
M∈T

U(M) ≥ 0 (U)
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Proof for : (U)

(U): Instead of proving a global inequality∑
M∈T

U(M) ≥ 0 (U)

we decompose U(M) into three vertex potentials: if A,B and C are the vertices of M,

U(M) = U̇A
M + U̇B

M + U̇C
M

and prove a local inequality for each vertex v ∈ T :∑
M∈T |v∈M

U̇v
M ≥ 0 (•)

Δ
ΔΔ1

2

3

4U̇v
M1

+ 2U̇v
M2

+ U̇v
M3

= 0

Δ2

Δ3

Δ4

Δ1

'
'

'

'

U̇v′

M′1
+ U̇v′

M′2
+ U̇v′

M′3
+ U̇v′

M′4
> 0

Delaunay triangulation properties → finite number of cases → verification by computer

Daria Pchelina SDA2 2020 December 3, 2020 12 / 14



Proof for : (U)

(U): Instead of proving a global inequality∑
M∈T

U(M) ≥ 0 (U)

we decompose U(M) into three vertex potentials: if A,B and C are the vertices of M,

U(M) = U̇A
M + U̇B

M + U̇C
M

and prove a local inequality for each vertex v ∈ T :∑
M∈T |v∈M

U̇v
M ≥ 0 (•)

Δ
ΔΔ1

2

3

4U̇v
M1

+ 2U̇v
M2

+ U̇v
M3

= 0

Δ2

Δ3

Δ4

Δ1

'
'

'

'

U̇v′

M′1
+ U̇v′

M′2
+ U̇v′

M′3
+ U̇v′

M′4
> 0

Delaunay triangulation properties → finite number of cases → verification by computer

Daria Pchelina SDA2 2020 December 3, 2020 12 / 14



Proof for : (M)

Defining U, we try to make it as small as possible keeping it locally positive around any
vertrex (•).

How to check
S(M) ≥ U(M) (M)

on each triangle M? (There is a continuum of them)

Interval arithmetic!

A representation of a number x is an interval I whose endpoints are exact values representable in a computer
memory and such that x ∈ I .

Delaunay triangulation properties → uniform bound on edge length:

Verify S(Me1,e2,e3 ) ≥ U(Me1,e2,e3 ) where

e1 = [ra+rb, ra+rb+2s] e2 = [rc+rb, rc+rb+2s] e3 = [ra+rc , ra+rc+2s]

Not precise enough → dichotomy
(intervals intersect)
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Conclusion

TODO

classify all the remaining cases
(modified Connelly’s conjecture)

maximal density for other disc sizes
(which do not allow triangulated packings)

existence of a triangulated packing for
a given set of discs – decidable?

for this: good comprehension of the density
redistribution, more optimisation

deformations of triangulated packings keep
the density high → good lower bound on the
maximal density

are there aperiodic triangulated packings?

triangulated packings ∼ tilings by triangles with local rules

Thank you for your attention! :-)
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The proof for

A Delaunay triangulation of a packing: no points inside a circumscribed circle

δ∗ = δM∗ = π

2
√

3 ∀ M, δM ≤ δM∗ = δ∗

A

B

C
>
3
_2π

The largest angle of any triangle is between π
3

and 2π
3

R = |AC |
2 sin B̂

≥ 1

sin B̂

The density of a triangle M: δM = π/2
area(M)

The area of a triangle ABC with the largest angle B̂ is 1
2
|AB|·|BC |· sin B̂

which is at least 1
2
·2·2·

√
3

2
=
√

3

Thus the density of ABC is less or equal to π/2√
3
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Proving an inequality with interval arithmetic

To store and perform computations on transcendental numbers (like π), we use intervals.

A representation of a number x is an interval I whose endpoints are exact values
representable in a computer memory and such that x ∈ I .

sage: x = RIF(0,1) # Interval [0,1]

sage: x < 2

True # ∀t ∈ [0, 1], t < 2
sage: (x+x).endpoints()

(0.0, 2.0) # [0,1]+[0,1]

sage: Ipi = RIF(pi) # Interval for π
(3.14159265358979, 3.14159265358980)

sage: sin(Ipi).endpoints() # Interval for sin(π)
(-3.21624529935328e-16, 1.22464679914736e-16)

Intervals that intersect are incomparable.

sage: sin(Ipi) >= 0

False

sage: sin(Ipi) <= 0

False # Interval for sin(π) contains 0
sage: sin(Ipi) <= x

False # These intervals intersect
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