

Triangulated ternary disc packings that maximize the density

Daria Pchelina

supervised by

Thomas Fernique

December 3, 2020

- ·	-		
Daria	20	hol	100
Dalla	гι.		

SDA2 2020

$$\delta(P) = \limsup_{n \to \infty} \frac{\operatorname{area}([-n, n]^2 \cap P)}{\operatorname{area}([-n, n]^2)}$$

$$\delta(P) = \limsup_{n \to \infty} \frac{\operatorname{area}([-n, n]^2 \cap P)}{\operatorname{area}([-n, n]^2)}$$

$$\delta(P) = \limsup_{n \to \infty} \frac{\operatorname{area}([-n, n]^2 \cap P)}{\operatorname{area}([-n, n]^2)}$$

$$\delta(P) = \limsup_{n \to \infty} \frac{\operatorname{area}([-n, n]^2 \cap P)}{\operatorname{area}([-n, n]^2)}$$

$$\delta(P) = \limsup_{n \to \infty} \frac{\operatorname{area}([-n, n]^2 \cap P)}{\operatorname{area}([-n, n]^2)}$$

$$\delta(P) = \limsup_{n \to \infty} \frac{\operatorname{area}([-n, n]^2 \cap P)}{\operatorname{area}([-n, n]^2)}$$

Density:

$$\delta(P) = \limsup_{n \to \infty} \frac{\operatorname{area}([-n, n]^2 \cap P)}{\operatorname{area}([-n, n]^2)}$$

Which packings maximize the density?

|--|

Density:

$$\delta(P) = \limsup_{n \to \infty} \frac{\operatorname{area}([-n, n]^2 \cap P)}{\operatorname{area}([-n, n]^2)}$$

Which packings maximize the density?

1) 2	rin.	0~	hal	inn
1.74	L A	гι.		ll a

Why do we study packings?

• to pack fruits

Why do we study packings?

to pack fruits

and vegetables

 to make compact materials

Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods. Journal of the American Chemical Society, 137(20):6662–6669, 2015. Context 🔵 and 🔴

$$\delta = \frac{\pi}{2\sqrt{3}}$$

Lagrange, 1772

The hexagonal packing maximizes the density among -lattice packings.

Thue, 1910 (Toth, 1940)

The hexagonal packing maximizes the density.

Context 🔵 and 🔴

Daria Pchelina SDA2 2020 December 3, 2020 4 / 14

Context 🔍 🔍

()

Two discs of radii 1 and r:

Lower bound on the density: $\frac{\pi}{2\sqrt{3}}$ (hexagonal packing with only 1 disc used)

Context 🔵 🔍

Two discs of radii 1 and r:

Lower bound on the density: $\frac{\pi}{2\sqrt{3}}$ (hexagonal packing with only 1 disc used)

Upper bound on the density:

Florian, 1960

The density of a packing never exceeds the density in the following triangle:

_		_				
	ori:	5 12		20	lin	-
_ U	aria	a 🗆	- CI	IE.		а

Context 🔵 🔍

A packing is called **triangulated** if each "hole" is bounded by three tangent discs.

Kennedy, 2006

There are 9 values of r allowing triangulated packings.

Context 🔵 🔍

A packing is called triangulated if each "hole" is bounded by three tangent discs.

Kennedy, 2006

There are 9 values of r allowing triangulated packings.

Heppes 2000,2003 Kennedy 2004 Bedaride, Fernique, 2019

All these 9 packings maximize the density.

Daria Pchelina

SDA2 2020

December 3, 2020 6 / 14

Conjecture (Connelly, 2018)

If a finite set of discs allows a **saturated** triangulated packing then the density is maximized on a saturated triangulated packing.

True for \bigcirc and \bigcirc \bigcirc .

Conjecture (Connelly, 2018)

If a finite set of discs allows a **saturated** triangulated packing then the density is maximized on a saturated triangulated packing.

True for \bigcirc and \bigcirc \bigcirc .

What happens with $\bigcirc \bigcirc \bullet \circ$?

Context 🔵 🔍 °

Context 🔵 🔍 °

3 discs: 164 pairs (r, s) allowing triangulated packings: (Fernique, Hashemi, Sizova 2019) • 15 cases: non saturated

• 24 cases: a 2-disk packing is denser

Daria Pchelina

• Case 53 is proved (Fernique 2019)

Context 🔵 🔍 °

3 discs: 1 r s164 pairs (r, s) allowing triangulated packings: (Fernique, Hashemi, Sizova 2019)

- 15 cases: non saturated
- 24 cases: a 2-disk packing is denser
- Case 53 is proved (Fernique 2019)
- 15 more cases proved

Daria Pchelina

Context 🔵 🔍 °

3 discs: 164 pairs (r, s) allowing triangulated packings: (Fernique, Hashemi, Sizova 2019) • 15 cases: non saturated • 24 cases: a 2-disk packing is denser • Case 53 is proved

- Case 53 is prover (Fernique 2019)
- 15 more cases proved

• The others?

Daria Pchelina

$$\delta^* = \delta_{\Delta^*} = \frac{\pi}{2\sqrt{3}}$$

$$\forall \ {\vartriangle}, \ \delta_{\vartriangle} \le \delta_{\vartriangle^*} = \delta^*$$

$$\delta^* = \delta_{\Delta^*} = \frac{\pi}{2\sqrt{3}}$$

$$\forall \vartriangle, \ \delta_{\vartriangle} \leq \delta_{\vartriangle^*} = \delta^*$$

$$\delta^* = \delta_{\Delta^*} = \frac{\pi}{2\sqrt{3}}$$

$$\forall \; {\scriptscriptstyle \Delta}, \; \delta_{\scriptscriptstyle \Delta} \leq \delta_{\scriptscriptstyle \Delta^*} = \delta^*$$

$$\delta = \sum_{\Delta \in \mathcal{T}} \delta_{\Delta} \le \sum_{\Delta^* \in \mathcal{T}^*} \delta_{\Delta^*} \le \delta^*$$

Idea of the proof for $\bigcirc \circ$

Delaunay triangulation \rightarrow weighted by the disc radii

Triangles have different densities:

Idea of the proof for 🔵 오

Delaunay triangulation \rightarrow weighted by the disc radii

Triangles have different densities:

Redistribution of the densities:

Idea of the proof for 🕒 🔍 🗠

Delaunay triangulation \rightarrow weighted by the disc radii

Triangles have different densities:

Redistribution of the densities:

Some triangles "share their density" with neighbors

_		-		
1) 21				100
Da	l d l	г u	IEI	IIId

Idea of the proof for 🕒 🔍 🗠

Delaunay triangulation \rightarrow weighted by the disc radii

Triangles have different densities:

Redistribution of the densities:

Some triangles "share their density" with neighbors

_		-		
1) 21				100
Da	l d l	г u	IEI	IIId

Idea of the proof for 🕒 🔍 🗠

Delaunay triangulation \rightarrow weighted by the disc radii

Triangles have different densities:

Redistribution of the densities:

Some triangles "share their density" with neighbors

_		-		
1) 21				100
Da	l d l	г u	IEI	IIId

Proof for O •

 \mathcal{T}^* – saturated triangulated packing of density δ

 $\ensuremath{\mathcal{T}}$ – any other saturated packing with the same discs

Proof for O •

 \mathcal{T}^* – saturated triangulated packing of density δ

 $\ensuremath{\mathcal{T}}$ – any other saturated packing with the same discs

The sparsity of a triangle $\triangle \in \mathcal{T}$: $S(\triangle) = \delta \times area(\triangle) - cov(\triangle)$

 $S(\triangle) > 0$ iff the density of covering of \triangle is less than δ $S(\triangle) < 0$ iff the density of covering of \triangle is greater than δ

$$\delta(\mathcal{T}^*) \geq \delta(\mathcal{T}) \hspace{0.2cm} \Leftrightarrow \hspace{0.2cm} \sum_{\vartriangle \in \mathcal{T}} S(\vartriangle) \geq 0$$

Proof for O •

 \mathcal{T}^* – saturated triangulated packing of density δ

 $\ensuremath{\mathcal{T}}$ – any other saturated packing with the same discs

 $S(\triangle) > 0$ iff the density of covering of \triangle is less than δ $S(\triangle) < 0$ iff the density of covering of \triangle is greater than δ

$$\delta(\mathcal{T}^*) \geq \delta(\mathcal{T}) \quad \Leftrightarrow \quad \sum_{\Delta \in \mathcal{T}} S(\Delta) \geq 0 \quad \Leftrightarrow \quad (\Delta), (U)$$

To show that, introduce a **potential** U such that for any triangle $\triangle \in \mathcal{T}$,

$$S(\triangle) \ge U(\triangle)$$
 (\triangle)

and

$$\sum_{\Delta \in \mathcal{T}} U(\Delta) \ge 0 \tag{U}$$

(U): Instead of proving a global inequality

$$\sum_{\Delta \in \mathcal{T}} U(\Delta) \ge 0 \tag{U}$$

we decompose $U(\triangle)$ into three vertex potentials: if A, B and C are the vertices of \triangle ,

$$U(\triangle) = \dot{U}^A_{\triangle} + \dot{U}^B_{\triangle} + \dot{U}^C_{\triangle}$$

and prove a local inequality for each vertex $v \in \mathcal{T}$:

$$\sum_{\Delta \in \mathcal{T} \mid v \in \Delta} \dot{U}^{v}_{\Delta} \ge 0 \tag{(\bullet)}$$

(U): Instead of proving a global inequality

$$\sum_{\Delta \in \mathcal{T}} U(\Delta) \ge 0 \tag{U}$$

we decompose $U(\triangle)$ into three vertex potentials: if A, B and C are the vertices of \triangle ,

$$U(\triangle) = \dot{U}^A_{\triangle} + \dot{U}^B_{\triangle} + \dot{U}^C_{\triangle}$$

and prove a local inequality for each vertex $v \in \mathcal{T}$:

Delaunay triangulation properties \rightarrow finite number of cases \rightarrow verification by computer

Defining U, we try to make it as small as possible keeping it locally positive around any vertrex (•).

How to check

$$S(riangle) \geq U(riangle)$$

on each triangle \triangle ? (There is a continuum of them)

(△)

Defining U, we try to make it as small as possible keeping it locally positive around any vertrex (•).

How to check

$$S(\triangle) \ge U(\triangle)$$
 (\triangle)

on each triangle \triangle ? (There is a continuum of them)

Interval arithmetic!

A representation of a number x is an interval I whose endpoints are exact values representable in a computer memory and such that $x \in I$.

Defining U, we try to make it as small as possible keeping it locally positive around any vertrex (•).

How to check

$$S(\triangle) \ge U(\triangle)$$
 (\triangle)

on each triangle \triangle ? (There is a continuum of them)

Interval arithmetic!

A representation of a number x is an interval I whose endpoints are exact values representable in a computer memory and such that $x \in I$.

Delaunay triangulation properties \rightarrow uniform bound on edge length:

$$\begin{array}{l} \text{Verify } S(\triangle_{e_1,e_2,e_3}) \geq U(\triangle_{e_1,e_2,e_3}) \text{ where} \\ e_1 = [r_a + r_b, r_a + r_b + 2s] \ e_2 = [r_c + r_b, r_c + r_b + 2s] \ e_3 = [r_a + r_c, r_a + r_c + 2s] \end{array}$$

Not precise enough \rightarrow dichotomy (intervals intersect)

Conclusion

TODO

- classify all the remaining cases (modified Connelly's conjecture)
- maximal density for other disc sizes (which do not allow triangulated packings)

for this: good comprehension of the density redistribution, more optimisation

deformations of triangulated packings keep the density high \rightarrow good lower bound on the maximal density

• existence of a triangulated packing for a given set of discs – decidable?

are there aperiodic triangulated packings?

triangulated packings \sim tilings by triangles with local rules

Conclusion

TODO

- classify all the remaining cases (modified Connelly's conjecture)
- maximal density for other disc sizes (which do not allow triangulated packings)

for this: good comprehension of the density redistribution, more optimisation

deformations of triangulated packings keep the density high \rightarrow good lower bound on the maximal density

• existence of a triangulated packing for a given set of discs – decidable?

are there aperiodic triangulated packings?

triangulated packings \sim tilings by triangles with local rules

Thank you for your attention! :-)

D		D	-1-	-1	
Dai	Па	- Pi	CH	e	ina

The proof for 🔵

The proof for 🔵

The proof for 🔵

- The largest angle of any triangle is between $\frac{\pi}{3}$ and $\frac{2\pi}{3}$ $R = \frac{|AC|}{2\sin\hat{B}} \ge \frac{1}{\sin\hat{B}}$
- The density of a triangle \triangle : $\delta_{\triangle} = \frac{\pi/2}{area(\triangle)}$
- The area of a triangle ABC with the largest angle \hat{B} is $\frac{1}{2}|AB|\cdot|BC|\cdot\sin\hat{B}$ which is at least $\frac{1}{2}\cdot 2\cdot 2\cdot \frac{\sqrt{3}}{2} = \sqrt{3}$
- Thus the density of ABC is less or equal to $\frac{\pi/2}{\sqrt{3}}$

Proving an inequality with interval arithmetic

To store and perform computations on transcendental numbers (like π), we use intervals.

A representation of a number x is an interval I whose endpoints are exact values representable in a computer memory and such that $x \in I$.

```
sage: x = RIF(0,1)# Interval [0,1]sage: x < 2</td>TrueTrue# \forall t \in [0,1], t < 2sage: (x+x).endpoints()# [0,1]+[0,1]
```

Proving an inequality with interval arithmetic

To store and perform computations on transcendental numbers (like π), we use intervals.

A representation of a number x is an interval I whose endpoints are exact values representable in a computer memory and such that $x \in I$.

Proving an inequality with interval arithmetic

To store and perform computations on transcendental numbers (like π), we use intervals.

A representation of a number x is an interval I whose endpoints are exact values representable in a computer memory and such that $x \in I$.

```
sage: x = RIF(0,1)
                                                                 # Interval [0,1]
sage: x < 2
                                                                 # \forall t \in [0, 1], t < 2
True
sage: (x+x).endpoints()
(0.0, 2.0)
                                                                     \# [0,1] + [0,1]
sage: Ipi = RIF(pi)
                                                                 # Interval for \pi
(3.14159265358979, 3.14159265358980)
sage: sin(Ipi).endpoints()
                                                             # Interval for sin(\pi)
(-3.21624529935328e-16, 1.22464679914736e-16)
Intervals that intersect are incomparable.
sage: sin(Ipi) >= 0
False
sage: sin(Ipi) <= 0</pre>
```

```
# Interval for sin(\pi) contains 0
```

These intervals intersect

sage: sin(Ipi) <= x</pre>

False

False