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What is a packing?

Discs:

Packing P:
(in R?)
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Why do we study packings?

@ to pack fruits

@ and vegetables
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hy do we study packing

@ to pack fruits

@ and vegetables

@ to make
compact
materials

Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods.
Journal of the American Chemical Society, 137(20):6662-6669, 2015.
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Context @ and ¢

2D hexagonal () -packing: 5= 3%
Lagrange, 1772

The hexagonal packing maximizes the density among O -lattice packings.

Thue, 1910 (Toth, 1940)

The hexagonal packing maximizes the density. J
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Context @ and ¢

2D hexagonal () -packing: 5= 3%
Lagrange, 1772

The hexagonal packing maximizes the density among O -lattice packings.

Thue, 1910 (Toth, 1940)

The hexagonal packing maximizes the density. J
3D hexagonal O -packing: 6= %
Gauss, 1831

The hexagonal packing maximizes the density among lattice O -packings.

Hales, Ferguson, 1998-2014 (Conjectured by Kepler, 1611)
The hexagonal packing maximizes the density. J
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Context @

Two discs of radii 1 and r: Q .

Lower bound on the density: ﬁ (hexagonal packing with only 1 disc used)
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Context @

Two discs of radii 1 and r: Q .

Lower bound on the density: ﬁ (hexagonal packing with only 1 disc used)

Upper bound on the density:

Florian, 1960

The density of a packing never exceeds the density in the following triangle:
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Context @

A packlng is called triangulated if each “hole is bounded by three tangent discs.

Kennedy, 2006

There are 9 values of r allowing trlangulated packmgs
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Context @

A packmg is called triangulated if each “hole is bounded by three tangent discs.

Kennedy, 2006

There are 9 values of r allowing trlangulated packlngs

Heppes 2000,2003
Kennedy 2004
Bedaride, Fernique, 2019

All these 9 packings maximize
the density.

r

0 0.2 0.4 0.6 0.8 1
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Context @

Conjecture (Connelly, 2018)

If a finite set of discs allows a saturated triangulated packing then the density is
maximized on a saturated triangulated packing.

Jl5E

True for O and O @,

O)
)@
@
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Context @

Conjecture (Connelly, 2018)

If a finite set of discs allows a saturated triangulated packing then the density is
maximized on a saturated triangulated packing.

Jl5E

True for O and O @,

O)
)@
@

What happens with O @< ?
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1
3 discs: @ ‘ ‘
— — =
1 r s
0.8
164 pairs (r, s) allowing
triangulated packings:
(Fernique, Hashemi, Sizova 2019)
0.6
@ 15 cases: non saturated
@ 24 cases: a 2-disk
packing is denser 0.4
o Case 53 is proved
(Fernique 2019)
0.2
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r/s
14
3 discs: @ ‘ ‘
— — = %
1 r s
0.8 v
164 pairs (r, s) allowing W “‘%
triangulated packings:
(Fernique, Hashemi, Sizova 2019) . 3
0.6 ¥
@ 15 cases: non saturated
@ 24 cases: a 2-disk
Co ¥ Vv
packing is denser 0.4 4 ¢
. k3 183 K 2
g

o Case 53 is proved ¥ g e .

(Fernique 2019) %3
@ 15 more cases proved %27 coE ¥ g

.
T T T T T
0.2 0.4 0.6 0.8 1

Daria Pchelina SDA2 2020 December 3, 2020 8 /14



Context @

r/s
14
3 discs: @ ‘ ‘
— — %
1 r s
0.8 v
164 pairs (r, s) allowing @ “‘z
triangulated packings:
(Fernique, Hashemi, Sizova 2019) - 3
0.6 v
@ 15 cases: non saturated
@ 24 cases: a 2-disk
. . 3 g
packing is denser 0.4 4 ¢
. k3 183 K 2
g

o Case 53 is proved ‘ 2 e

(Fernique 2019) %3
@ 15 more cases proved %27 v Yoo g
@ The others? s 3 4

.
T T T T T
0.2 0.4 0.6 0.8 1

Daria Pchelina SDA2 2020 December 3, 2020 8 /14



Idea of the proof for @

A Delaunay triangulation of a packing: no points inside a circumscribed circle

NAAVATAVATS

5*:6A*:% VA7 5A§6A*:§*

Daria Pchelina SDA2 2020 December 3, 2020 9/14



Idea of the proof for @

A Delaunay triangulation of a packing: no points inside a circumscribed circle

NAAVATAVATS

5*:6A*:% VA7 5ASSA*:§*

Daria Pchelina SDA2 2020 December 3, 2020 9/14



Idea of the proof for @

A Delaunay triangulation of a packing: no points inside a circumscribed circle

NAAVATAVATS

6*:6A*:% VA7 5AS6A*:(S*

= 6, ) b <0

AET A*ET™
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Idea of the proof for @

Delaunay triangulation — weighted by the disc radii

Triangles have different densities:

N
5((%5) y 6(@)

What to do?
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Proof for @

Y Ve Vv o

« . . . EA SAl oY, a9
T* — saturated triangulated packing of density § va‘ 5 (’V"‘ o @Vg‘ K

T — any other saturated packing with the same discs W
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Proof for @

[ MV, WV

« . . . EA SAl e
T* — saturated triangulated packing of density § ’Vg‘ 5 (’Vg‘ o @Vg‘ K

T — any other saturated packing with the same discs m

The sparsity of a triangle A€ T: S(A) = § x area(n) — cov(A)

S(A) > 0 iff the density of covering of A is less than §
S(A) < 0 iff the density of covering of A is greater than §

S(T)=6(T) & > S(a)=0

AET

Daria Pchelina SDA2 2020 December 3, 2020 11 / 14



Proof for @

2 v Ve N
T* — saturated triangulated packing of density § ;V%" R (;V%" R :é'%"
D/ Y%

D/

T — any other saturated packing with the same discs W

The sparsity of a triangle A€ T: 5(A) = § x area(A) — cov(A)

S5(A) > 0 iff the density of covering of A is less than &
5(A) < 0 iff the density of covering of A is greater than §

AT 28(T) & .S(8)20 « (5),(V)

AET

To show that, introduce a potential U such that for any triangle A€ T,

S5(a) = U(n) (2)
and

D U(r)=o0 (V)

AET
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Proof for @ © : (V)

(U): Instead of proving a global inequality

> U(r) =0 (V)

AET
we decompose U(A) into three vertex potentials: if A, B and C are the vertices of A,

U(p) = U2 + UE + US
and prove a local inequality for each vertex v € T

> Ui=o (o)

AET|ven
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Proof for @ © : (V)

(U): Instead of proving a global inequality

> U(r) =0 (V)

AET
we decompose U(A) into three vertex potentials: if A, B and C are the vertices of A,

U(p) = U2 + UE + US
and prove a local inequality for each vertex v € T

> Ui=o (o)

AET|veEn

40y, +20%, + U, =0 U+ 05+ 05 + 0 >0

Delaunay triangulation properties — finite number of cases — verification by computer
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Proof for @ © : (n)

Defining U, we try to make it as small as possible keeping it locally positive around any
vertrex (e).

How to check
5(2) = U(») (&)

on each triangle A? (There is a continuum of them)
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Proof for @ © : (n)

Defining U, we try to make it as small as possible keeping it locally positive around any
vertrex (e).

How to check
5(2) = U(») (&)

on each triangle A? (There is a continuum of them)
Interval arithmetic!

A representation of a number x is an interval | whose endpoints are exact values representable in a computer
memory and such that x € /.
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Proof for @ © : (n)

Defining U, we try to make it as small as possible keeping it locally positive around any
vertrex (e).

How to check
5(2) = U(») (&)

on each triangle A? (There is a continuum of them)

Interval arithmetic!

A representation of a number x is an interval | whose endpoints are exact values representable in a computer
memory and such that x € /.

Delaunay triangulation properties — uniform bound on edge length:

Verify S(Aej,er,e5) = U(Aep,e0,e5) Where
e1 = [fatrp, ratro+2s] €2 = [re+rp, re+ro+2s] €3 = [ratre, ratre+2s]

Not precise enough — dichotomy
(intervals intersect)
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Conclusion

TODO
o classify all the remaining cases for this: good comprehension of the density
(modified Connelly's conjecture) redistribution, more optimisation
o maximal density for other disc sizes deformations of triangulated packings keep
(which do not allow triangulated packings) the density high — good lower bound on the

maximal density

o existence of a triangulated packing for

> . ) are there aperiodic triangulated packings?
a given set of discs — decidable?

triangulated packings ~ tilings by triangles with local rules
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Conclusion

TODO
o classify all the remaining cases for this: good comprehension of the density
(modified Connelly's conjecture) redistribution, more optimisation
o maximal density for other disc sizes deformations of triangulated packings keep
(which do not allow triangulated packings) the density high — good lower bound on the

maximal density

@ existence of a triangulated packing for

> . . are there aperiodic triangulated packings?
a given set of discs — decidable?

triangulated packings ~ tilings by triangles with local rules

Thank you for your attention! :-)
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The proof for @

A Delaunay triangulation of a packing: no points inside a circumscribed circle

ORORA A

6*:6A*:% VA, 6AS5A*:6*
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The proof for @

A Delaunay triangulation of a packing: no points inside a circumscribed circle
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The proof for @

A Delaunay triangulation of a packing: no points inside a circumscribed circle

(5* = 6A* = % v A, 5A S 6A* — (5* \ \7 /“
. . T 2 _ |AC| 1
@ The largest angle of any triangle is between 3 and 3 R= B 2 B

@ The density of a triangle A: §, = a;/(i)

o The area of a triangle ABC with the largest angle B is $|AB|-|BC|-sin B
which is at least 1.2.2.2 = /3

@ Thus the density of ABC is less or equal to ”7/52
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Proving an inequality with interval arithmetic

To store and perform computations on transcendental numbers (like 7), we use intervals.

A representation of a number x is an interval | whose endpoints are exact values
representable in a computer memory and such that x € /.

sage: x = RIF(0,1) # Interval [0,1]
sage: x < 2

True #Vtelo,1], t<?2
sage: (x+x).endpoints()

(0.0, 2.0) # [0,1]+[0,1]
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Proving an inequality with interval arithmetic

To store and perform computations on transcendental numbers (like 7), we use intervals.

A representation of a number x is an interval | whose endpoints are exact values
representable in a computer memory and such that x € /.

sage: x = RIF(0,1) # Interval [0,1]
sage: x < 2

True #Vtelo,1], t<?2
sage: (x+x).endpoints()

(0.0, 2.0) # [0,1]1+[0,1]
sage: Ipi = RIF(pi) # Interval for w
(3.14159265358979, 3.14159265358980)

sage: sin(Ipi) .endpoints() # Interval for sin(m)

(-3.21624529935328e-16, 1.22464679914736e-16)
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Proving an inequality with interval arithmetic

To store and perform computations on transcendental numbers (like 7), we use intervals.

A representation of a number x is an interval | whose endpoints are exact values
representable in a computer memory and such that x € /.

sage: x = RIF(0,1) # Interval [0,1]
sage: x < 2

True #Vtelo,1], t<?2
sage: (x+x).endpoints()

(0.0, 2.0) # [0,1]1+[0,1]
sage: Ipi = RIF(pi) # Interval for w
(3.14159265358979, 3.14159265358980)

sage: sin(Ipi) .endpoints() # Interval for sin(m)

(-3.21624529935328e-16, 1.22464679914736e-16)

Intervals that intersect are incomparable.

sage: sin(Ipi) >= 0

False

sage: sin(Ipi) <= 0

False # Interval for sin(w) contains 0
sage: sin(Ipi) <= x

False # These intervals intersect
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