Weakly and Strongly Aperiodic SFTs on Baumslag-Solitar Groups

Julien Esnay
Joint work with Etienne Moutot

Institut de Mathématiques de Toulouse

SDA2
December 3rd 2020
\[\mathcal{A} = \{ \begin{array}{c} \hspace{1cm} \end{array} \} \]

\[\mathcal{X} = \{ x \in \mathcal{A}^{\mathbb{Z}^2} \mid \text{adjacent tiles of } \mathcal{A} \text{ match in } x \} \]

is a Subshift of Finite Type (SFT).
$\mathcal{A} = \{ \begin{array}{c} \text{tiles} \\ \end{array} \} $

$\mathcal{X} = \{ x \in \mathcal{A}^{\mathbb{Z}^2} \mid \text{adjacent tiles of } \mathcal{A} \text{ match in } x \} $

is a Subshift of Finite Type (SFT).
\[\mathbb{Z}^2 = \langle a, b \mid bab^{-1} = a \rangle \]
\[\mathbb{Z}^2 = \langle a, b \mid bab^{-1} = a \rangle \]

Vertices = group elements
Edges $g - ga$ and $g - gb$
\[\mathbb{Z}^2 = \langle a, b \mid bab^{-1} = a \rangle \]

Vertices = group elements
Edges \(g \rightarrow ga \) and \(g \rightarrow gb \)
Cycles following the relation
\[\mathbb{Z}^2 = \langle a, b \mid bab^{-1} = a \rangle \]

Vertices = group elements
Edges \(g - ga \) and \(g - gb \)
Cycles following the relation
\[\mathbb{Z}^2 = \langle a, b \mid bab^{-1} = a \rangle \]

Vertices = group elements

Edges \(g \to ga \) and \(g \to gb \)

Cycles following the relation

\[a \]
\[b \]
\[b^{-1} \]
\[\mathbb{Z}^2 = \langle a, b \mid bab^{-1} = a \rangle \]

Vertices = group elements
Edges \(g - ga \) and \(g - gb \)
Cycles following the relation
\[\mathbb{Z}^2 = \langle a, b \mid bab^{-1} = a \rangle \]

Vertices = group elements
Edges $g - ga$ and $g - gb$
\[\mathbb{Z}^2 = \langle a, b \mid bab^{-1} = a \rangle \]

Vertices = group elements
Edges \(g - ga \) and \(g - gb \)
\[\mathbb{Z}^2 = \langle a, b \mid bab^{-1} = a \rangle \]

Vertices = group elements

Edges \(g \rightarrow ga \) and \(g \rightarrow gb \)

\[\mathbb{Z}^2 \text{ acts on } X \text{ by translation:} \]

\[((0, -1) \cdot x)(0, 0) = x(-(0, -1)) = x(0, 1) \]
\[\mathbb{Z}^2 = \langle a, b \mid bab^{-1} = a \rangle \]

Vertices = group elements
Edges \(g – ga \) and \(g – gb \)

\[\mathbb{Z}^2 \text{ acts on } X \text{ by translation:} \]

\[((0, -1) \cdot x)(0, 0) = x(-(0, -1)) = x(0, 1) \]
\[\mathbb{Z}^2 = \langle a, b \mid bab^{-1} = a \rangle \]

Vertices = group elements
Edges \(g - ga \) and \(g - gb \)

\[\mathbb{Z}^2 \text{ acts on } X \text{ by translation:} \]

\[((m, n) \cdot x)(p, q) = x(-(m, n) + (p, q)) \]
\(\mathbb{Z}^2 \) acts on \(x \in X \) by translation:

\[
((m, n) \cdot x)(p, q) = x(-(m, n) + (p, q))
\]
\(\mathbb{Z}^2 \) acts on \(x \in X \) by translation:

\[
((m, n) \cdot x)(p, q) = x(- (m, n) + (p, q))
\]

SFT \(X \subset A^G \) on any group \(G \). Let \(x \in X \), we have the \textit{shift action}

\[
(g \cdot x)(h) = x(g^{-1}h).
\]
\mathbb{Z}^2 acts on $x \in X$ by translation:

\[
((m, n) \cdot x)(p, q) = x(-(m, n) + (p, q))
\]

SFT $X \subset A^G$ on any group G. Let $x \in X$, we have the shift action

\[
(g \cdot x)(h) = x(g^{-1}h).
\]
\mathbb{Z}^2 acts on $x \in X$ by translation:

$$((m, n) \cdot x)(p, q) = x(-(m, n) + (p, q))$$

SFT $X \subset A^G$ on any group G. Let $x \in X$, we have the shift action

$$(g \cdot x)(h) = x(g^{-1}h).$$

For $x \in X$, $Stab_G(x) = \{g \in G \mid g \cdot x = x\}$.
\mathbb{Z}^2 acts on $x \in X$ by translation:

$$((m, n) \cdot x)(p, q) = x(-(m, n) + (p, q))$$

SFT $X \subset \mathcal{A}^G$ on any group G. Let $x \in X$, we have the *shift action*

$$(g \cdot x)(h) = x(g^{-1}h).$$

For $x \in X$, $Stab_G(x) = \{ g \in G \mid g \cdot x = x \}$.
For $x \in X$, $Orb_G(x) = \{ y \in X \mid \exists g \in G, g \cdot x = y \}$.
Definition

Let X be a nonempty SFT on a group G.

IMPORTANT: we require ALL configurations of X to look like that!!
Definition

Let X be a nonempty SFT on a group G. X is a \textit{weakly aperiodic} SFT if $\forall x \in X, \left|\text{Orb}_G(x)\right| = +\infty$.

IMPORTANT: we require ALL configurations of X to look like that!!
Definition

Let X be a nonempty SFT on a group G.

- X is a **weakly aperiodic** SFT if $\forall x \in X, |Orb_G(x)| = +\infty$.
- X is a **strongly aperiodic** SFT if $\forall x \in X, Stab_G(x) = \{e\}$.

IMPORTANT: we require ALL configurations of X to look like that!!
Theorem (Berger 66, Robinson 71...)

There exists a strongly aperiodic SFT on \mathbb{Z}^2.

Tiles can be rotated and reflected.
Theorem (Berger 66, Robinson 71...)

There exists a strongly aperiodic SFT on \mathbb{Z}^2.
Remark

If G is infinite, strongly aperiodic \Rightarrow weakly aperiodic.
Remark

If G is infinite, strongly aperiodic \Rightarrow weakly aperiodic.

Theorem (folklore)

A nonempty SFT X on \mathbb{Z}^2 is weakly aperiodic if and only if it is strongly aperiodic.
Remark
If G is infinite, strongly aperiodic \Rightarrow weakly aperiodic.

Theorem (folklore)
A nonempty SFT X on \mathbb{Z}^2 is weakly aperiodic if and only if it is strongly aperiodic.

Question
To what extent can these complex configurations emerge from local rules? Does it depend on the group structure?
$BS(m, n) = \langle a, b \mid ba^m b^{-1} = a^n \rangle, m, n \in \mathbb{Z}$
$BS(m, n) = \langle a, b \mid ba^m b^{-1} = a^n \rangle, m, n \in \mathbb{Z}$

$BS(1, 1) = \mathbb{Z}^2$
BS(m, n) = \langle a, b \mid ba^m b^{-1} = a^n \rangle, \ m, n \in \mathbb{Z}

BS(1, 1) = \mathbb{Z}^2

Example: BS(1, 2)
$BS(m, n) = \langle a, b \mid ba^m b^{-1} = a^n \rangle, m, n \in \mathbb{Z}$

$BS(1, 1) = \mathbb{Z}^2$

Example: $BS(1, 2)$
BS(m, n) = \langle a, b \mid ba^m b^{-1} = a^n \rangle, m, n \in \mathbb{Z}

BS(1, 1) = \mathbb{Z}^2

Example: BS(1, 2)
$BS(m, n) = \langle a, b \mid ba^m b^{-1} = a^n \rangle, m, n \in \mathbb{Z}$

$BS(1, 1) = \mathbb{Z}^2$

Example: $BS(1, 2)$
\[
BS(m, n) = \langle a, b \mid ba^m b^{-1} = a^n \rangle, \ m, n \in \mathbb{Z}
\]

\[
BS(1, 1) = \mathbb{Z}^2
\]

Example: \(BS(1, 2) \)
Motivation

Results on BS Groups

Weak-but-not-strong aperiodicity for BS(1,n)

Conclusion

\[
BS(m, n) = \langle a, b \mid ba^m b^{-1} = a^n \rangle, \ m, n \in \mathbb{Z}
\]

\[
BS(1, 1) = \mathbb{Z}^2
\]

Example: \(BS(1, 2)\)
Motivation

Results on BS Groups

Weak-but-not-strong aperiodicity for BS(1,n)

Conclusion

Julien Esnay (IMT)
Motivation

Weak-but-not-strong aperiodicity for BS(1,n)

Results on BS Groups

Conclusion

Aperiodic SFTs on BS Groups
Motivation

Results on BS Groups

Weak-but-not-strong aperiodicity for BS(1,n)

Conclusion

Aperiodic SFTs on BS Groups

Julien Esnay (IMT)
Motivation

Results on BS Groups

Weak-but-not-strong aperiodicity for BS(1,n)

Conclusion

Julien Esnay (IMT)
Motivation

Results on BS Groups

Weak-but-not-strong aperiodicity for BS(1,n)

Conclusion

Figure: Wikipedia, page *Baumslag-Solitar Group*

Figure: Wikipedia, page *Baumslag-Solitar Group*
Another example, \(BS(2, 3) \):

\[
\begin{align*}
g.b & \quad g.ba & \quad g.ba^2 \\
g & \quad g.a & \quad g.a^2 & \quad g.a^3
\end{align*}
\]
<table>
<thead>
<tr>
<th>Shape</th>
<th>Group</th>
<th>Strongly aperiodic SFT</th>
<th>Weakly-not-strongly aperiodic SFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>\mathbb{Z}^2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y+</td>
<td>$BS(1, n)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X+</td>
<td>$BS(n, n)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X+</td>
<td>$BS(m, n)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shape</td>
<td>Group</td>
<td>Strongly aperiodic SFT</td>
<td>Weakly-not-strongly aperiodic SFT</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>[+]</td>
<td>[\mathbb{Z}^2]</td>
<td></td>
<td>(Folklore)</td>
</tr>
<tr>
<td>[Y] +</td>
<td>[BS(1, n)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[X] +</td>
<td>[BS(n, n)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[X] +</td>
<td>[BS(m, n)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shape</td>
<td>Group</td>
<td>Strongly aperiodic SFT</td>
<td>Weakly-not-strongly aperiodic SFT</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>+</td>
<td>\mathbb{Z}^2</td>
<td>(Robinson)</td>
<td>(Folklore)</td>
</tr>
<tr>
<td>Y</td>
<td>$BS(1, n)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>$BS(n, n)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>$BS(m, n)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Aperiodic SFTs on BS Groups

<table>
<thead>
<tr>
<th>Shape</th>
<th>Group</th>
<th>Strongly aperiodic SFT</th>
<th>Weakly-not-strongly aperiodic SFT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\mathbb{Z}^2</td>
<td>(Robinson)</td>
<td>(Folklore)</td>
</tr>
<tr>
<td></td>
<td>$BS(1, n)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$BS(n, n)$</td>
<td></td>
<td>(Aubrun-Kari)</td>
</tr>
<tr>
<td></td>
<td>$BS(m, n)$</td>
<td></td>
<td>(Aubrun-Kari)</td>
</tr>
<tr>
<td>Shape</td>
<td>Group</td>
<td>Strongly aperiodic SFT</td>
<td>Weakly-not-strongly aperiodic SFT</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>+</td>
<td>\mathbb{Z}^2</td>
<td>(Robinson)</td>
<td>(Folklore)</td>
</tr>
<tr>
<td>Υ+</td>
<td>$BS(1, n)$</td>
<td>Adapted from Aubrun-Kari</td>
<td></td>
</tr>
<tr>
<td>Γ+</td>
<td>$BS(n, n)$</td>
<td></td>
<td>(Aubrun-Kari)</td>
</tr>
<tr>
<td>Δ+</td>
<td>$BS(m, n)$</td>
<td></td>
<td>(Aubrun-Kari)</td>
</tr>
</tbody>
</table>
Results on BS Groups

<table>
<thead>
<tr>
<th>Shape</th>
<th>Group</th>
<th>Strongly aperiodic SFT</th>
<th>Weakly-not-strongly aperiodic SFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>\square</td>
<td>\mathbb{Z}^2</td>
<td>(Robinson)</td>
<td>(Folklore)</td>
</tr>
<tr>
<td>\bigcirc</td>
<td>$BS(1, n)$</td>
<td>Adapted from Aubrun-Kari</td>
<td>Using substitutions</td>
</tr>
<tr>
<td>\bigcirc</td>
<td>$BS(n, n)$</td>
<td></td>
<td>(Aubrun-Kari)</td>
</tr>
<tr>
<td>\bigcirc</td>
<td>$BS(m, n)$</td>
<td></td>
<td>(Aubrun-Kari)</td>
</tr>
<tr>
<td>Shape</td>
<td>Group</td>
<td>Strongly aperiodic SFT</td>
<td>Weakly-not-strongly aperiodic SFT</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>+</td>
<td>\mathbb{Z}^2</td>
<td>(Robinson)</td>
<td>(Folklore)</td>
</tr>
<tr>
<td>Y</td>
<td>$BS(1, n)$</td>
<td>Adapted from Aubrun-Kari</td>
<td>Using substitutions</td>
</tr>
<tr>
<td>X</td>
<td>$BS(n, n)$</td>
<td>Group theory and theorem by Jeandel</td>
<td>(Aubrun-Kari)</td>
</tr>
<tr>
<td>X</td>
<td>$BS(m, n)$</td>
<td></td>
<td>(Aubrun-Kari)</td>
</tr>
</tbody>
</table>
Motivation

Results on BS Groups

<table>
<thead>
<tr>
<th>Shape</th>
<th>Group</th>
<th>Strongly aperiodic SFT</th>
<th>Weakly-not-strongly aperiodic SFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>\mathbb{Z}^2</td>
<td>(Robinson)</td>
<td>(Folklore)</td>
</tr>
<tr>
<td>$Y+$</td>
<td>$BS(1, n)$</td>
<td>Adapted from Aubrun-Kari</td>
<td>Using substitutions</td>
</tr>
<tr>
<td>$X+$</td>
<td>$BS(n, n)$</td>
<td>Group theory and theorem by Jeandel</td>
<td>(Aubrun-Kari)</td>
</tr>
<tr>
<td>$X+$</td>
<td>$BS(m, n)$</td>
<td>?</td>
<td>(Aubrun-Kari)</td>
</tr>
</tbody>
</table>

Conclusion

Julien Esnay (IMT)
\[\sigma_0 : \begin{cases}
0 & \mapsto 0^{n-1}1 \\
1 & \mapsto 0^n
\end{cases} \]
σ_0: \[
\begin{align*}
0 &\mapsto 0^{n-1}1 \\
1 &\mapsto 0^n
\end{align*}
\]

σ_r: \[
\begin{align*}
0 &\mapsto 0^{n-r-1}10^r \\
1 &\mapsto 0^n
\end{align*}
\]
\[\sigma_0 : \begin{cases}
0 \mapsto 0^{n-1}1 \\
1 \mapsto 0^n
\end{cases} \]

\[\sigma_r : \begin{cases}
0 \mapsto 0^{n-r-1}10^r \\
1 \mapsto 0^n
\end{cases} \]
Motivation

Results on BS Groups

Weak-but-not-strong aperiodicity for BS(1,n)

σ₀ : \[
\begin{align*}
0 &\mapsto 0^{n-1}1 \\
1 &\mapsto 0^n
\end{align*}
\]

σᵣ : \[
\begin{align*}
0 &\mapsto 0^{n-r-1}10^r \\
1 &\mapsto 0^n
\end{align*}
\]

\(c \in \{0, 1\}\)

Julien Esnay (IMT)
Motivation

Results on BS Groups

Weak-but-not-strong aperiodicity for BS(1,n)

Conclusion

0

Julien Esnay (IMT)

Aperiodic SFTs on BS Groups
Motivation

Weak-but-not-strong aperiodicity for BS(1,n)

Conclusion

Julien Esnay (IMT)
Motivation

Results on BS Groups

Weak-but-not-strong aperiodicity for BS(1,n)

Conclusion

Aperiodic SFTs on BS Groups

Julien Esnay (IMT)

SDA2, 03/12/20
Theorem (E.-Moutot)

The resulting SFT X_σ is weakly aperiodic.
Theorem (E.-Moutot)

The resulting SFT X_σ is weakly aperiodic.

If some a^k period, $k \in \mathbb{Z}$, then base word u is k-periodic.
Theorem (E.-Moutot)

The resulting SFT X_σ is weakly aperiodic.

If some a^k period, $k \in \mathbb{Z}$, then base word u is k-periodic.
It is also nk-periodic.
Theorem (E.-Moutot)
The resulting SFT X_σ is weakly aperiodic.

If some a^k period, $k \in \mathbb{Z}$, then base word u is k-periodic.
It is also nk-periodic.
Then the words above u are k-periodic.
Theorem (E.-Moutot)

The resulting SFT X_σ is weakly aperiodic.

If some a^k period, $k \in \mathbb{Z}$, then base word u is k-periodic. It is also nk-periodic. Then the words above u are k-periodic. By the pigeonhole principle, two of these words are identical.
Theorem (E.-Moutot)

The resulting SFT X_σ is weakly aperiodic.

If some a^k period, $k \in \mathbb{Z}$, then base word u is k-periodic.
It is also nk-periodic.
Then the words above u are k-periodic.
By the pigeonhole principle, two of these words are identical.

Proposition

A fixpoint of any $\sigma_{i_k} \circ \cdots \circ \sigma_{i_1}$ is aperiodic.
Theorem (E.-Moutot)
The resulting SFT X_σ is weakly aperiodic.

If some a^k period, $k \in \mathbb{Z}$, then base word u is k-periodic. It is also nk-periodic. Then the words above u are k-periodic. By the pigeonhole principle, two of these words are identical.

Proposition
A fixpoint of any $\sigma_{i_k} \circ \cdots \circ \sigma_{i_1}$ is aperiodic.

No a^k period for any configuration \implies weak aperiodicity.
Theorem (E.-Moutot)

X_σ contains some b-periodic configuration.
Theorem (E.-Moutot)

X_σ contains some b-periodic configuration.

\[\sigma_1 : \begin{cases} 0 &\mapsto 0^{n-2}10 \\ 1 &\mapsto 0^n \end{cases} \]

\[w := \sigma_1(w) \]
Theorem (E.-Moutot)

X_σ contains some b-periodic configuration.

\[\sigma_1 : \begin{cases}
0 \mapsto 0^{n-2}10 \\
1 \mapsto 0^n
\end{cases} \]

\[w := \sigma_1(w) \]
Theorem (E.-Moutot, 2020):

- Strongly aperiodic SFT on $BS(1, n)$;
- **Weakly-not-strongly aperiodic SFT on $BS(1, n)$**;
- Strongly aperiodic SFT on $BS(n, n)$.

Thank you for your attention!
Strongly aperiodic SFT on $BS(n, n)$:

$$BS(n, n) \triangleright H \cong \mathbb{Z} \times \mathbb{F}_n$$

with H of finite index.
Strongly aperiodic SFT on $BS(n, n)$:

$$BS(n, n) \triangleright H \cong \mathbb{Z} \times \mathbb{F}_n$$

with H of finite index.

Theorem (Jeandel 2015)

There exists a strongly aperiodic SFT on $\mathbb{Z} \times \mathbb{F}_n$.
Strongly aperiodic SFT on $BS(n, n)$:

$$BS(n, n) \triangleright H \cong \mathbb{Z} \times F_n$$

with H of finite index.

Theorem (Jeandel 2015)

There exists a strongly aperiodic SFT on $\mathbb{Z} \times F_n$.

Theorem (Carroll-Penland 2015)

A finitely generated group and a subgroup of finite index have the same aperiodicity.
Strongly aperiodic SFT on $BS(1, n)$:

$$f : \left[\frac{1}{3}, 2\right] \rightarrow \left[\frac{1}{3}, 2\right]$$

$$f(x) = \begin{cases}
 f_1(x) = 2x & \text{if } x \in \left[\frac{1}{3}, 1\right) \\
 f_2(x) = \frac{1}{3}x & \text{if } x \in [1, 2]
\end{cases}$$

There is no k such that $f^k(x) = x$.
Strongly aperiodic SFT on $BS(1, n)$:

$$f : [\frac{1}{3}, 2] \rightarrow [\frac{1}{3}, 2]$$

$$f(x) = \begin{cases}
 f_1(x) = 2x & \text{if } x \in [\frac{1}{3}, 1) \\
 f_2(x) = \frac{1}{3}x & \text{if } x \in [1, 2]
\end{cases}$$

There is no k such that $f^k(x) = x$.

Diagram showing the action of f and f^2 on the interval.
\[f^{-2}(x) \quad f^{-2}(x) \quad f^{-2}(x) \quad f^{-2}(x) \]

\[f^{-1}(x) \quad f^{-1}(x) \quad f^{-1}(x) \quad f^{-1}(x) \]

\[x \]

No period following a: same reason as substitutions.

No period following b: no periodic orbit of f.

No combination of a and b: nice tree-like structure of BS(1, n).
No period following a: same reason as substitutions.
No period following a: same reason as substitutions.
No period following b: no periodic orbit of f.
No period following a: same reason as substitutions.
No period following b: no periodic orbit of f.
No combination of a and b: nice tree-like structure of $BS(1, n)$.